Instructions for Installation, Operation and Maintenance of Type VCP-W Outdoor Vacuum Circuit Breaker Element # **WARNING** IMPROPERLY INSTALLING OR MAINTAINING THESE PRODUCTS CAN RESULT IN DEATH, SERI-OUS PERSONAL INJURY, OR PROPERTY DAMAGE. READ AND UNDERSTAND THESE INSTRUCTIONS BEFORE ATTEMPTING ANY UNPACKING, ASSEMBLY, OPERATION OR MAINTENANCE OF THE CIRCUIT BREAKERS. INSTALLATION OR MAINTENANCE SHOULD BE ATTEMPTED ONLY BY QUALIFIED PERSONNEL. THIS INSTRUCTION BOOK SHOULD NOT BE CONSIDERED ALL INCLUSIVE REGARDING INSTALLATION OR MAINTENANCE PROCEDURES. IF FURTHER INFORMATION IS REQUIRED, YOU SHOULD CONTACT CUTLER-HAMMER. # **WARNING** THE CIRCUIT BREAKER ELEMENTS DESCRIBED IN THIS BOOK ARE DESIGNED AND TESTED TO OPERATE WITHIN THEIR NAMEPLATE RATINGS. OPERATION OUTSIDE OF THESE RATINGS MAY CAUSE THE EQUIPMENT TO FAIL, RESULTING IN DEATH, BODILY INJURY AND PROPERTY DAMAGE. ALL SAFETY CODES, SAFETY STANDARDS AND/OR REGULATIONS AS THEY MAY BE APPLIED TO THIS TYPE OF EQUIPMENT MUST BE STRICTLY ADHERED TO. THESE CIRCUIT BREAKER ELEMENTS ARE DESIGNED TO BE INSTALLED PURSUANT TO AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) C37.09. SERIOUS INJURY, INCLUDING DEATH, CAN RESULT FROM FAILURE TO FOLLOW THE PROCEDURES OUTLINED IN THIS MANUAL. THESE CIRCUIT BREAKER ELEMENTS ARE SOLD PURSUANT TO A NON-STANDARD PURCHASING AGREEMENT WHICH LIMITS THE LIABILITY OF THE MANUFACTURER. #### **Cutler-Hammer** Power Distribution Components Division Five Parkway Center Pittsburgh, PA 15220 First Printing: February 1996 All possible contingencies which may arise during installation, operation or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding his particular installation, operation or maintenance of particular equipment, contact a Cutler-Hammer representative. I.B 5-4 5-5 SE 6-1 6-2 SE 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-1 7-1 # **TABLE OF CONTENTS** | | | | PAGE | |------------|-------------------|--|----------------| | SECT | TON 1 | INTRODUCTION | | | 1-1 | Prelimir | nary Comments and Safety Precautions | 1 | | | 1-1.1 | Warranty and Liability Information | | | | 1-1.2 | Safety Precautions | | | 1-2 | Genera | InformationCP-W Outdoor Vacuum Circuit Breaker Element Ratings (Table 1.1) | | | 1-3
1-4 | Type V
Outline | S and Dimensions | 3 | | | | | | | SEC | | SAFE PRACTICES | 4 | | 2-1 | Recom | mendations | 4 | | SEC | TION 3 | RECEIVING, HANDLING AND STORAGE | | | 3-1 | Genera | al | 5 | | 3-2 | Doggis | ing | | | 3-3 | Handlin | 00 | | | 3-4 | Storag | ρ | | | 3-5 | Toole s | and Accessories | | | 3-6 | Type V | /CP-W Outdoor Vacuum Circuit Breaker Element Weights (Table 3.1) | 6 | | SEC | Introdu | INITIAL INSPECTION AND INSTALLATION | 10 | | 4-2 | Manua | Operation Check | 10 | | 4-3 | Vacuu | m Interrupter Integrity | | | 4-4 | Inculat | tion | | | 4-5 | Contac | ct Frosion and Wipe | 10 | | 4-6 | Primar | ry Circuit Resistance | 10 | | 4-7 | Name | nlate | 10 | | 4-8 | Interfa | ce Verification | 10 | | SEC | TION 5 | DESCRIPTION AND OPERATION | | | 5-1 | Introdu | uction | 11 | | 5-2 | Interru | Inter Assembly | | | | 5-2.1 | Vacuum Interrupter | 17 | | | 5-2.2 | Contact Erosion Indication | | | | 5-2.3 | "T" Cutout Loading Spring Indicator | 13
ಕಾ | | | 5-2.4 | Contact Wipe and Stroke | ۱۵
مه | | 5-3 | | Energy Mechanism | ۱۵ | | | 5-3.1 | Operation of Stored Energy Mechanism | 14 | | | 5-3.2 | Charging | ۱ ۷ | | | 5-3.3 | Closing Operation | ۱۹
۱۵ م | | | 5-3.4 | Tripping Operation | | Effe | PAGE | |----------------------------------| | 1
1
1
2 | | 4 | | 5
5
5
6 | | 10
10
10
10
10
10 | | 111111131313 | | | | | PAGE | |------------------------|---------------------------|--|------| | 5-4 | Control
5-4.1
5-4.2 | Schemes Timing Terminal Blocks | 18 | | 5-5 | | ons Counter | | | SECT | NON 6 | BREAKER ELEMENT INTERFACING | | | 6-1 | | ction | | | 6-2 | | l Guidelines | | | | 6-2.1 | Electrical Clearances | | | | 6-2.2 | Interphase Barriers | | | | 6-2.3
6-2.4 | Front Cover (Faceplate) | 19 | | SECT | rion 7 | INSPECTION, MAINTENANCE AND TROUBLESHOOTING | | | 7-1 | Introdu | ction | 21 | | 7-2 | Freque | ncy of Inspection and Maintenance | 21 | | | 7-2.1 | Qualified Personnel | | | | 7-2.2 | General Torque Guidelines | | | 7-3
7-4 | | tion and Maintenance Procedures | | | 7 -4
7-5 | | n Interrupter Integrity Testt Erosion and Wipe | | | 7-3
7-6 | | on | | | 7-7 | | on Integrity Check | | | 7-8 | | y Circuit Resistance Check | | | 7-9 | | nism Check | | | 7-10 | | ation | | | 7-11 | Trouble | eshooting Chart | 27 | | | | | |1414 #### **FIGURES** | Figure | Title | Page | |--------|--|------| | 1-1 | Type VCP-W Outdoor Circuit Breaker Outlines and Dimensions (inches) | 3 | | 3-1 | Front View VCP-W Outdoor Vacuum Circuit Breaker Element | 7 | | 3-2 | Rear View VCP-W Outdoor Vacuum Circuit Breaker Element | | | 3-3 | Typical VCP-W Outdoor Breaker Element Escutcheon | 9 | | 5-1 | Typical Front Mounted Mechanism | 12 | | 5-2 | Circuit Breaker Element Rear View Showing Vacuum Interrupters | | | | and Current Carrying System | 13 | | 5-3 | Graphic of Arc Interruption | | | 5-4 | Closing Cam and Trip Linkage | | | 5-5 | Charging Schematic | | | 5-6 | Typical VCP-W Outdoor Breaker Element "DC" and "AC" Control Schematics | 17 | | 5-7 | Standard Secondary Terminal Blocks Shown Mounted | 18 | | 6-1 | Typical VCP-W Front Cover, Nameplate and Operational Indicators | 20 | | 7-1 | Lubrication Points | 22 | | 7-2 | Vacuum Interrupter Showing Contact Erosion Indicator with Breaker Open | 25 | | 7-3 | Vacuum Interrupter Showing Contact Erosion Indicator with Breaker Closed | 25 | | 7-4 | Typical "T" Contact Wipe Indicator | | | 7-5 | Typical Wipe Indication | | ### **TABLES** | Table | Title | Page | |------------|---|------| | 1.1 | Type VCP-W Outdoor Vacuum Circuit Breaker Element on Symmetrical Current Rating Basis | 2 | | 3.1 | Type VCP-W Outdoor Vacuum Circuit Breaker Element Weights | 6 | | 5.1 | Breaker Timing | 18 | | 7.1
7.2 | Torque Guidelines Test Voltage | 22 | | 7.3 | Typical Resistance Measurements | 27 | 1.B. SEC 1-1 CAL This aspe mair Brea rizec spec befo is re 1-1. NO 1 INC insta Ham TIC WA ING THE DES Cutle in co othe que expe clair resu tions limit pow 1-1. All s mus and THE PAF ME TEC EXA FAN Effect Page312131320222525 **Page**182227 # **SECTION 1: INTRODUCTION** ### 1-1 PRELIMINARY COMMENTS AND SAFETY PRE-CAUTIONS This technical document is intended to cover most aspects associated with the installation, operation and maintenance of Type VCP-W Outdoor Vacuum Circuit Breaker Elements. It is provided as a guide for authorized and qualified personnel only. Please refer to the specific WARNING and CAUTION in Paragraph 1-1.2 before proceeding past Section 1. If further information is required by the purchaser regarding a particular installation, application or maintenance activity, a Cutler-Hammer representative should be contacted. #### 1-1.1 WARRANTY AND LIABILITY INFORMATION NO WARRANTIES, EXPRESSED OR IMPLIED. INCLUDING WARRANTIES OF FITNESS FOR A PAR-TICULAR PURPOSE OF MERCHANTABILITY, OR WARRANTIES ARISING FROM COURSE OF DEAL-ING OR USAGE OF TRADE, ARE MADE REGARDING THE INFORMATION, RECOMMENDATIONS AND DESCRIPTIONS CONTAINED HEREIN. In no event will Cutler-Hammer be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or otherwise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information and descriptions contained herein. #### 1-1.2 SAFETY PRECAUTIONS All safety codes, safety standards and/or regulations must be strictly observed in the installation, operation and maintenance of this device. # **WARNING** THE WARNINGS AND CAUTIONS INCLUDED AS PART OF THE PROCEDURAL STEPS IN THIS DOCUMENT ARE FOR PERSONNEL SAFETY AND PROTECTION OF EQUIPMENT FROM DAMAGE. AN EXAMPLE OF A TYPICAL WARNING LABEL HEADING IS SHOWN ABOVE IN REVERSE TYPE TO FAMILIARIZE PERSONNEL WITH THE STYLE OF PRESENTATION. THIS WILL HELP TO INSURE THAT PERSONNEL ARE ALERT TO WARNINGS, WHICH MAY APPEAR THROUGHOUT THE DOCUMENT. IN ADDITION, CAUTIONS ARE ALL UPPER CASE AND BOLDFACE AS SHOWN BELOW. # **CAUTION** COMPLETELY READ AND UNDERSTAND THE MATERIAL PRESENTED IN THIS DOCUMENT BEFORE ATTEMPTING INSTALLATION, OPERATION OR APPLICATION OF THE EQUIPMENT. IN ADDITION, ONLY QUALIFIED PERSONS SHOULD BE PERMITTED TO PERFORM ANY WORK ASSOCIATED WITH THE EQUIPMENT. ANY WIRING INSTRUCTIONS PRESENTED IN THIS DOCUMENT MUST BE FOLLOWED PRECISELY. FAILURE TO DO SO COULD CAUSE PERMANENT EQUIPMENT DAMAGE. #### 1-2 GENERAL INFORMATION The purpose of this book is to provide instructions for unpacking, storage, use, operation and maintenance of Type VCP-W Outdoor Vacuum Circuit Breaker Elements. These circuit breaker elements can be used in outdoor housings when the customer provides the appropriate housing and interface with the VCP-W element. Notice: It is the customer's responsibility to perform the tests required by appropriate standards to prove the overall design validity. The VCP-W Outdoor Vacuum Circuit Breaker Element is a fixed type interrupter element ideal for use in new installations as well as modernization and life extension of existing equipment.
Designed to ANSI Standards for reliable performance and simplified maintenance, VCP-W Outdoor Vacuum Circuit Breaker Elements provide reliable control and protection for electrical equipment and circuits. In addition, these technologically advanced circuit breaker elements are compact, thus permitting the overall installation size to be significantly smaller than previously available equipment. # **WARNING** SATISFACTORY PERFORMANCE OF THESE CIRCUIT BREAKER ELEMENTS IS CONTINGENT UPON PROP- F:T-N I.B. ER APPLICATION, CORRECT INSTALLATION AND ADEQUATE MAINTENANCE. THIS INSTRUCTION BOOK MUST BE CAREFULLY READ AND FOLLOWED IN ORDER TO OBTAIN OPTIMUM PERFORMANCE FOR LONG USEFUL LIFE OF THE CIRCUIT BREAKER ELEMENTS. # **WARNING** THE CIRCUIT BREAKER ELEMENTS DESCRIBED IN THIS BOOK ARE DESIGNED AND TESTED TO OPER- ATE WITHIN THEIR NAMEPLATE RATINGS. OPERATION OUTSIDE OF THESE RATINGS MAY CAUSE THE EQUIPMENT TO FAIL, RESULTING IN DEATH, BODILY INJURY AND PROPERTY DAMAGE. ALL SAFETY CODES, SAFETY STANDARDS AND/OR REGULATIONS AS THEY MAY BE APPLIED TO THIS TYPE OF EQUIPMENT MUST BE STRICTLY ADHERED TO. # 1-3 TYPE VCP-W OUTDOOR VACUUM CIRCUIT BREAKER ELEMENT RATINGS (TABLE 1.1) Table 1.1 Type VCP-W Outdoor Vacuum Circuit Breaker Element on Symmetrical Current Rating Basis 0 9 | | Rated Value | | Insulation La | e FF0505 | Consult | 1 | James . | Mada | Transisti | A | Carrent Values | 11 35 100 A V | 170,5670, VANISAL 180,50
180,5670, VANISAL 180,50
180,568,560,570,570,570,570,570,570,570,570,570,57 | | | | |--------------|--------------------|------------------|---------------|--|---------------------|--|----------------|---------|---------------------|------------|--|---|--|-----------|---------|-----| | | Mardenan
Vetage | Voltage
Range | Withstead To | at Vellege | Carriera
Carrott | Short
Creat | surley
Time | Parado: | Patentry
Voltage | Y
(78V) | | Capacitor:
Second-1 | kutuking Ra
uposi | Beliete-I | Perpose | | | | | | | in the second se | | Second Se | | | | | (2.7/*Times
*Seed Short
Circuit Current) | | | | Hade | | | 60374 | ly mag | #70mm | tif mae | HY Page | Auprica | E Arm | Dycker | | Whet | | - List Product | | | - | - Augus | A | | 155 VCP-W 12 | 15.5 | 1 | 50 | 110 | 600
1200 | 12.5 | 5 | 2 | 29 | 36 | 34 | 2 | 400 | 100 | 400 | 400 | | 155 VCP-W 16 | 15.5 | 1 | 50 | 110 | 600
1200 | 16 | 5 | 2 | 29 | 36 | 43 | 2 | 400 | 100 | 400 | 400 | | 155 VCP-W 20 | 15.5 | 1 | 50 | 110 | 600
1200 | 20 | 5 | 2 | 29 | 36 | 54 | 2 | 400 | 100 | 400 | 400 | | 155 VCP-W 25 | 15.5 | 1 | 50 | 110 | 600
1200 | 25 | 5 | 2 | 29 | 36 | 68 | 2 | 400 | 100 | 400 | 400 | KEMA tested to applicable ANSI Standards C37.04, C37.09, C37.06. (Standard operating duty, CO-15 seconds-CO.) Operating time values; opening 30-45 ms, closing 45-60 ms, and reclosing 300 ms (18 cycles). FAT-N ___ Figu Effectiv ³⁻cycle interrupting time capability is available. Tested with 20 kA peak inrush current at 4.2 kHz. ⁶⁰⁰A also available. ⁵ Low inductive tests were performed at 4.1A. PERA-SE ATH, ND/OR THIS HERED Effective 2/96 # 1-4 OUTLINES AND DIMENSIONS Figure 1-1 Type VCP-W Outdoor Circuit Breaker Outlines and Dimensions (inches) #### **SECTION 2: SAFE PRACTICES** #### 2-1 RECOMMENDATIONS Type VCP-W Outdoor Vacuum Circuit Breaker Elements are equipped with high speed, high energy operating mechanisms. They are designed with several built-in interlocks and safety features to provide safe and proper operating sequences. Details of the outdoor breaker element are shown in Figure 1-1 with interfacing details discussed in Section 6. It is the customer's responsibility to insure that
all such interfaces are supplied and appropriate tests performed to adequately prove proper functioning and operation. ### **WARNING** TO PROTECT THE PERSONNEL ASSOCIATED WITH INSTALLATION, OPERATION, AND MAINTENANCE OF THESE CIRCUIT BREAKER ELEMENTS, THE FOLLOWING PRACTICES MUST BE FOLLOWED: Only qualified persons, as defined in the National Electrical Safety Code, who are familiar with the installation and maintenance of medium voltage circuits and equipment, should be permitted to work on these circuit breaker elements. - Read these instructions carefully before attempting any installation, operation or maintenance of these circuit breaker elements. - Always remove all power to the circuit breaker element before performing any maintenance. Failure to do so could result in electrical shock leading to death, severe personal injury or property damage. - Do not work on a closed circuit breaker element or a breaker element with closing springs charged. The closing springs should be discharged and the main contacts open before working on the breaker element. Failure to do so could result in cutting or crushing injuries. - Always remove the maintenance tool from the breaker after charging the closing springs. - Circuit breaker elements are equipped with safety interlocks. Do Not remove, interfere with or in any manner defeat them. This may result in death, bodily injury or equipment damage. - If a circuit breaker element is removed from its fixed position in a structure, do not work on the circuit breaker element suspended from a lifting yoke or chains. Maintenance work should be performed on a solid work surface, such as the floor. SEC STC I.B. 3-1 Type Elem tests before designment to promain 3-2 If the ately can b Upor for an contact tents required save wise conte Exam shipp hard comp dama Cutle 3-3 DO N FOR OPE ING MEN SON NAN BRE Effecti mpting these cir- er eleailure to to death, nent or a d. The le main er element. shing ne breaker safety in any th, bodily its fixed rcuit oke or med on a # SECTION 3: RECEIVING, HANDLING AND STORAGE #### 3-1 GENERAL Type VCP-W Outdoor Vacuum Circuit Breaker Elements are subjected to complete factory production tests in accordance with ANSI C37.09 and inspection before being packed. They are shipped in packages designed to provide maximum protection to the equipment during shipment and storage and at the same time to provide convenient handling. Tools, such as the maintenance tool, are shipped separately. #### 3-2 RECEIVING If the circuit breaker element is not to be used immediately but is to be placed in storage; maximum protection can be obtained by keeping it packed as shipped. Upon receipt of the equipment, inspect the containers for any signs of damage or rough handling. Open the containers carefully to avoid any damage to the contents. Use a nail puller rather than a crow bar when required. When opening the containers, be careful to save any loose items or hardware that may be otherwise discarded with the packing material. Check the contents of each package against the packing list. Examine the circuit breaker element for any signs of shipping damage such as broken, missing or loose hardware, damaged or deformed insulation and other components. File claims immediately with the carrier if damage or loss is detected and notify the nearest Cutler-Hammer Office. #### 3-3 HANDLING # **WARNING** DO NOT USE ANY LIFTING DEVICE AS A PLATFORM FOR PERFORMING MAINTENANCE, REPAIR OR ADJUSTMENT OF THE BREAKER OR FOR OPENING, CLOSING THE CONTACTS OR CHARGING THE SPRINGS. THE CIRCUIT BREAKER ELEMENT MAY SLIP OR FALL CAUSING SEVERE PERSONAL INJURY. ALWAYS PERFORM MAINTENANCE, REPAIR AND ADJUSTMENTS ON A SOLID WORK SURFACE CAPABLE OF SUPPORTING THE BREAKER ELEMENT. When a breaker element is ready for installation in an outdoor housing, a lifting yoke in conjunction with an overhead lifter or portable floor lifter can be used to move a breaker element. When a breaker element is to be lifted, position the lifting yoke over the breaker element and insert lifters into the breaker element side openings with the lifting hole toward the interrupters. Once the lifting yoke is securely seated in the holes, the breaker element can be carefully lifted and moved. #### 3-4 STORAGE If the circuit breaker element is to be placed in storage, maximum protection can be obtained by keeping it packed as shipped. Before placing it in storage, checks should be made to make sure that the breaker element is free from shipping damage and is in satisfactory operating condition. The circuit breaker element is shipped with its contacts open and closing springs discharged. The indicators on the front panel should confirm this. Insert the maintenance tool in the manual charge socket opening (Figure 3-3). Charge the closing springs by pumping the handle up and down approximately 38 times until a crisp metallic "click" is heard. This indicates that the closing springs are charged and is shown by the closing spring "charged" (vellow) indicator. Remove the maintenance tool. Operate the push-to-close button. The breaker element will close as shown by the breaker contacts "closed" (red) indicator. Operate the push-to-open button. The breaker element will trip as shown by the breaker contacts "open" (green) indicator. After completing this initial check, leave the closing springs "discharged" and breaker contacts "open". Outdoor storage of the breaker element is NOT recommended. If unavoidable, the outdoor location must be well drained and a temporary shelter from sun, rain, snow, corrosive fumes, dirt, falling objects and excessive moisture must be provided. Containers should be arranged to permit free circulation of air on all sides and temporary heaters should be used to minimize condensation. Moisture can cause rusting of metal parts and deterioration of high voltage insulation. A heat level of approximately 400 watts for each 100 cubic feet of volume is recommended with the heaters distributed uniformly throughout the structure near the floor. Indoor storage should be in a building with sufficient heat and air circulation to prevent condensation. If the building is not heated, the same general rule for heat as for outdoor storage should be applied. #### 3-5 TOOLS AND ACCESSORIES Several tools and accessories, both standard and optional are available for use with the circuit breaker element. **Maintenance Tool (Standard):** Used to charge closing springs. **Lifting Yoke (Optional):** Used to lift breaker element with overhead lifting device. # 3-6 TYPE VCP-W OUTDOOR VACUUM CIRCUIT BREAKER ELEMENT WEIGHTS (TABLE 3.1) Table 3.1 VCP-W Outdoor Breaker Weights^① | Rating | | Pounds | |--------------|-------------|--------| | 155 VCP-W 12 | 600
1200 | 325 | | 155 VCP-W 16 | 600
1200 | 325 | | 155 VCP-W 20 | 600
1200 | 325 | | 155 VCP-W 25 | 600
1200 | 325 | ① Does not include shipping carton. Figui CUIT nds 25 25 25 25 - ① Secondary Terminal Block - ② Front Panel - 3 Lifting Yoke Opening - 4 Escutcheon (Figure 3-4 for Details) Figure 3-1 Front View VCP-W Outdoor Vacuum Circuit Breaker Element Figure 3-2 Rear View VCP-W Outdoor Vacuum Circuit Breaker Element Figu Effectiv F:T·N 1 Figure 3-3 Typical VCP-W Outdoor Breaker Element Escutcheon # SECTION 4: INITIAL INSPECTION AND INSTALLATION #### 4-1 INTRODUCTION # **WARNING** BEFORE INSTALLING THE BREAKER ELEMENT IN ITS STRUCTURE, CAREFULLY FOLLOW THE INSTALLATION PROCEDURE GIVEN BELOW. NOT FOLLOWING THE PROCEDURE CAN FAIL TO UNCOVER SHIPPING DAMAGE THAT MAY RESULT IN INCORRECT BREAKER ELEMENT OPERATION LEADING TO DEATH, BODILY INJURY, AND EQUIPMENT DAMAGE. Before attempting to install a circuit breaker element in its structure, it should be carefully examined and operated manually. In addition, carefully examine the breaker for loose or obviously damaged parts. The following information is a guide for performing recommended checks and tests. #### 4-2 MANUAL OPERATION CHECK Refer to Figure 3-3 and then proceed by placing the maintenance tool into the manual charge socket opening. Charge the closing springs with about 38 up and down strokes of the handle. When charging is complete the closing crank goes over center with an audible CLICK and the springs Charged/ Discharged indicator shows "Charged." Notice: If the springs are to be charged on a closed breaker element, no click is heard at the end of charging operation. Discontinue charging and remove the maintenance tool as soon as "Charged" flag is fully visible. Continued attempts to charge further may result in damage to the mechanism. Remove the maintenance tool. Close and trip the circuit breaker element. Repeat several times. #### 4-3 VACUUM INTERRUPTER INTEGRITY Using a dry, lint free cloth or paper towel, clean all the accessible insulating surfaces of the pole units. Conduct a vacuum interrupter integrity check as described in Section 7. #### 4-4 INSULATION Check the breaker element's primary and secondary insulation as described in Section 7. #### 4-5 CONTACT EROSION AND WIPE Manually charge the closing springs and close the breaker element. Check contact erosion and wipe as described in Section 7. #### 4-6 PRIMARY CIRCUIT RESISTANCE Check the primary circuit resistance as described in Section 7. The resistance should not exceed the values specified. Record the values obtained for future reference. #### 4-7 NAMEPLATE Compare the breaker element nameplate information with drawings for compatibility. #### 4-8 INTERFACE VERIFICATION The Type VCP-W Outdoor Vacuum Circuit Breaker Element is supplied for fixed installation in an outdoor enclosure appropriately designed by the customer. In addition, it is the customer's responsibility to provide all necessary interface details and make all secondary and primary connections. The customer is also responsible for the performance of all required testing to adequately prove proper functioning and operation in keeping with applicable standards. Refer to Section 6 of this
manual for circuit breaker element interfacing information. SECT OPER 1.B. 6 5-1 IN The Ty Element for value fixed de tomer of Notice The circharge norma charging plated modula mechanents crupters The pr ment of #14 co used the being of This se breake all maj 5-2 IN Vacuu ed from ductor a serie tors th This d electric ### n all the s. Conducti oed in # ondary # the: vipe as ed in e values reference. rmation eaker outdoor omer. In provide all ondary and sponsible adequately ping with is manual ition. ### SECTION 5: DESCRIPTION AND OPERATION #### 5-1 INTRODUCTION The Type VCP-W Outdoor Vacuum Circuit Breaker Element is a vacuum type interrupting element designed for value added construction. The breaker element is a fixed design intended for outdoor application in a customer designed enclosure. Notice: The VCP-W Outdoor Vacuum Circuit Breaker Element was successfully tested to specific ratings in one particular enclosure with specific size interphase barriers unique to that enclosure design. Circuit breaker elements are not supplied to the customer with enclosures or interphase barriers. The enclosure, necessary mechanical and electrical interfaces with the circuit breaker element, interphase barriers and testing in keeping appropriate standards are the customer's responsibility. Section 6 of this manual provides information specific to the circuit breaker element to assist the customer. The circuit breaker element is operated by a motor charged spring type stored energy mechanism, charged normally by an electric motor or manually by a manual charging tool. The primary connections are bolted silver plated copper. VCP-W Circuit Breaker Elements are of a modular type construction containing a front accessible mechanism with unobstructed access to control components (Figure 5-1). Circuit breaker duty vacuum interrupters are used to open and close the primary circuit. The primary insulation used in the circuit breaker element design is cycloaliphatic epoxy. Type SIS, AWG #14 control wire with cross-linked polyolefin insulation is used throughout the control circuits with all terminals being of the screw type. This section describes the overall operation of the circuit breaker element as well as the function and operation of all major sub-assemblies and/or parts. #### 5-2 INTERRUPTER ASSEMBLY Vacuum interrupters are mounted vertically and supported from the fixed stem which is clamped to the top conductor. The exclusive current transfer system consists of a series of plated, high-conductivity copper leaf conductors that are pressed on the movable interrupter stem. This design provides a multipoint contact resulting in low electrical and thermal resistance. Utilizing this non-sliding current transfer system between the movable stem and the breaker main conductor eliminates maintenance (Figure 5-2). Direct acting insulated operating rods in conjunction with the breaker element's mechanism provide a fixed amount of interrupter movable stem motion. This motion is directly related to the interrupter's "Wipe" and "Stroke," each of which is discussed in detail later in this section. #### **5-2.1 VACUUM INTERRUPTER** Type VCP-W Outdoor Vacuum Circuit Breaker Elements utilize vacuum interrupters for interruption and switching functions. The vacuum interrupters use copper chrome contacts for superior dielectric strength, better performance characteristics, and lower chop current. Vacuum interruption provides the advantages of enclosed interrupters, reduced size and weight, short interrupting time, long life, reduced maintenance, and environmental compatibility. Arc interruption is simple and fast (Figure 5-3). In the closed position, current flows through the interrupter. When the contacts are opened, the arc is drawn between the contact surfaces. It is moved rapidly around the slotted contact surfaces by a self-induced magnetic force which prevents gross contact erosion as well as the formation of hot spots on contact surfaces. The arc burns in an ionized metal vapor which continually leaves the contact area and condenses on the surrounding metal shield. At current zero, the arc is extinguished and vapor production ceases. Very rapid dispersion, cooling, recombination, and deionization of the metal vapor plasma, together with the fast condensation of metal vapor products, cause the vacuum to be quickly restored. Hence, the opened contacts withstand the transient recovery voltage. #### 5-2.2 CONTACT EROSION INDICATION The purpose of a contact erosion indicator is to monitor the erosion of the vacuum interrupter contacts, which is very minimal over time with vacuum interrupters utilizing copper-chrome contact material. If contact erosion reaches 1/8 inch, the interrupter must be replaced. A contact erosion indicator mark is located on the moving stem of the interrupter (Figures 7-2 and 7-3). In order to determine if the contacts have eroded to the extent that the interrupter must be replaced, observe the erosion mark placed on each moving stem from the rear of the breaker with the breaker closed. The interrupter is Figu Vac satis brea repla 5-2.3 The meth rupte whe cont cont tion Dep may 5-2.4 Con vacu avai spee - 1 L.H. Closing Spring - 2 Anti-Pump Relay - 3 Auxiliary Switch - Motor Cutoff Switch - ⑤ Closing Cam - ⑤ Spring Release (Close Coil) Assembly - Shunt Trip Assembly - 8 Charging Motor - 9 Charging Pawl - Ratchet Wheel - 1 R. H. Closing Spring - ① Opening Spring - 13 Manual Charge Socket - 1 Operation Counter Figure 5-1 Typical Front Mounted Mechanism Figure 5-2 Circuit Breaker Element Rear View Showing Vacuum Interrupters and Current Carrying System satisfactory if the mark on the stem is visible with the breaker closed. The entire interrupter assembly must be replaced if the mark is no longer visible. #### 5-2.3 "T" CUTOUT LOADING SPRING INDICATOR The "T" cutout contact spring indicator is an additional method provided to indicate conditions within the interrupter. The visible "T" indicator is used to indicate whether the contact springs are maintaining the proper contact pressure to keep the contacts closed. Severe contact erosion would result in an unacceptable indication from the "T" indicator (Figures 7-4 and 7-5). Depending upon the structural design, a small mirror may be required to inspect all three poles. #### 5-2.4 CONTACT WIPE AND STROKE Contact wipe is the indication of (1) the force holding the vacuum interrupter contacts closed and (2) the energy available to hammer the contacts open with sufficient speed for interruption. Figure 5-3 Graphic of Arc Interruption Stroke is the gap between fixed and moving contacts of a vacuum interrupter with the breaker open. The circuit breaker element mechanism provides a fixed amount of motion to the operating rods. The first portion of the motion is used to close the contacts (i.e. stroke) and the remainder is used to further compress the preloaded wipe spring. This additional compression is called wipe. Wipe and Stroke are thus related to each other. As the stroke increases due to the erosion of contacts, the wipe decreases. A great deal of effort has been devoted to eliminating the need for field adjustments of wipe or stroke. # CAUTION There is no provision for in service adjustments of contact wipe and stroke. All such adjustments are factory set and should not be attempted in the field. #### 5-3 STORED ENERGY MECHANISM #### WARNING **KEEP HANDS AND FINGERS AWAY FROM THE** BREAKER'S INTERNAL PARTS WHILE THE BREAK- I.B ER CONTACTS ARE CLOSED OR THE CLOSING SPRINGS ARE CHARGED. THE BREAKER ELEMENT CONTACTS MAY OPEN OR THE CLOSING SPRINGS DISCHARGE CAUSING A CRUSHING INJURY. DISCHARGE THE SPRINGS AND OPEN THE ELEMENT BEFORE PERFORMING ANY ELEMENT MAINTENANCE, INSPECTION OR REPAIR. The spring stored energy operating mechanism is arranged vertically in front of all VCP-W breaker elements. It includes everything required for storing the energy, closing and tripping of the breaker element, as well as manual and electrical controls. The manual controls are all front accessible. Motion to close and open the interrupter contacts is provided through operating rods connecting the mechanism pole shaft to the bell cranks of the interrupter assemblies. # 5-3.1 OPERATION OF STORED ENERGY MECHANISM The mechanism stores the closing energy by charging the closing springs. The mechanism may rest in any one of the four positions shown in Figure 5-4 and as follows: - a. Breaker element open, closing springs discharged - b. Breaker element open, closing springs charged - c. Breaker element closed, closing springs discharged - d. Breaker element closed, closing springs charged #### 5-3.2 CHARGING Figure **5-5** is a schematic view of the spring charging parts of the stored energy mechanism. The major component of the mechanism is a cam shaft assembly which consists of a drive shaft to which are attached two closing spring cranks (one on each end), the closing cam, drive plates, and a free-wheeling ratchet wheel. The ratchet wheel is actuated by an oscillating mechanism driven by the motor eccentric. As the ratchet wheel rotates, it pushes the drive plates which in turn rotate the closing spring cranks and the closing cam with it. The closing spring cranks have spring ends connected to them, which are in turn coupled to the closing springs. As the cranks rotate, the closing springs are charged. When the closing springs are completely charged, the spring cranks go over dead center, and the closing stop roller comes against the spring release latch. The closing springs are now held in the fully charged position. Closing springs may also be charged manually. Insert the maintenance tool in the manual charging socket. Move it up and down approximately 38 times until a clicking sound is heard, and the closing springs charging indicator indicates "Charged." Any further motion of the maintenance tool will result in free wheeling of the ratchet wheel. #### **5-3.3 CLOSING OPERATION** Figure
5-4 shows the position of the closing cam and tripping linkage. Note that in Figure **5-4a** in which the breaker element is open and the closing springs are discharged, the trip "D" shaft and trip latch are in the unlatched position. Once charged, the closing springs can be released to close the breaker element by moving the spring release latch out of the way. This is done electrically or manuall by depressing the spring release lever, which turns the spring release latch out of the way of the closing stop roller. The force of the closing spring rotates the cam shaft through the spring cranks. The closing cam, being attached to the cam shaft, in turn rotates the pole shaft through the main link to close the breaker element. In Figure **5-4c** the linkage is shown with the breaker element in the closed position before the closing springs have been recharged. Interference of the trip "D" shaft with the trip latch prevents the linkage from collapsing, and the breaker element is held closed. Figure **5-4d** shows the breaker element in the closed position after the closing springs have been recharged. Note that the spring charging rotates the closing cam by one half turn. Since the cam surface in contact with the main link roller is cylindrical in this region, the spring charging operation does not affect the mechanism linkage. Since the primary contacts are completely enclosed in the vacuum interrupter and not adjustable in any way, a "Slow Close" capability is not provided with VCP-W breaker elements. #### 5-3.4 TRIPPING OPERATION When the trip "D" shaft is turned either by the trip buttor or trip coil, all links return to the original "open" conditionshown in Figure 5-4a. #### 5-4 CONTROL SCHEMES There are two basic control schemes for VCP-W outdoor breaker elements, one for DC control and one for Figu Effecti Effective 2 until a gs chargmotion of ng of the am and hich the ngs are dis-1 the eased to ing release or manually n turns the sing stop the cam cam, being pole shaft ement. oreaker eleg springs "D" shaft ollapsing, e closed recharged. sing cam by ict with the e spring anism link- nclosed in any way, a /CP-W e trip buttor n" condition P-W outind one for Figure 5-6a Breaker open and closing spring discharged. Figure 5-6c Breaker closed and closing spring discharged **(8**) 4 **(5**) (9) -(6) (1) ① Figure 5-6b Breaker open and closing spring charged. Figure 5-6d Breaker closed and closing spring charged - (1) Pole Shaft - (2) Main Link - Banana Link - Trip Latch - 5 Shunt Trip Lever - Shunt Trip Coil - Cam Shaft - Closing Cam - Operating Rod - (10) Main Link Roller - (11)Trip Bar "D" Shaft - Trip Latch Reset Spring Figure 5-4 Closing Cam and Trip Linkage Breaker Open, Springs Discharged - 1 Pole Shaft - Anti-Close Interlock - Spring Release (Close) Latch - Spring Crank - **Closing Spring** - Closing Spring Fixed End - Spring Release (Close) Coil Breaker Closed, Springs Charged - Cam Shaft - Motor Ratchet Lever - **Drive Pawl** - Ratchet Wheel - Holding Pawl - Spring Release (Close) Clapper - Spring Release Latch (Close Roller) Figure 5-5 Charging Schematic Figui Effectiv Figure 5-6 Typical VCP-W Outdoor Breaker Element "DC" and "AC" Control Schematics AC control voltages (Figure **5-6**). There may be different control voltages or more than one tripping element, but the principal mode of operation is as follows: As soon as the control power is applied, the spring charging motor automatically starts charging the closing springs. When the springs are charged, the motor cut off LS1/bb switch turns the motor off. The circuit breaker element may be closed by making the control switch close (CS/C) contact. Automatically upon closing of the breaker element, the motor starts charging the closing springs. The breaker element may be tripped any time by making the control switch trip (CS/T) contact. When the CS/C contact is made, the SR closes the breaker. If the CS/C contact is maintained after the breaker closes, the Y relay is picked up. The Y/a contact seals in Y until CS/C is opened. The Y/b contact opens the SR circuit, so that even though the breaker would subsequently open, it could not be reclosed before CS/C was released and remade. This is the anti-pump function. #### **5-4.1 TIMING** The opening and closing times for the circuit breakers vary depending upon the control voltage and the power rating. Typical values for VCP-W outdoor breaker elements are shown in Table 5.1. #### 5-4.2 TERMINAL BLOCKS All VCP-W outdoor breaker elements are supplied with 2 12-point secondary control terminal blocks for simple secondary control access (Figure 5-7). A number of points are used for breaker operation with a number of spare contacts for customer use. Refer to the control schemes of Figure 5-6 for exact contact usage and availability. For additional information concerning the levering mechanism, refer to the instruction manual supplied with the switchgear assembly. Paragraph 4-8.1 of this manual provides details concerning the use of the levering mechanism to move the circuit breaker into and out of the CONNECTED position within the assembly structure. #### 5-5 OPERATIONS COUNTER All breaker elements are equipped with a mechanical operations counter. As the breaker opens, the linkage connected to the pole shaft lever advances the counter reading by one (Figure 3-3). Table 5.1 Breaker Timing | Event | Milliseconds (maximum) | |--|------------------------| | Closing Time
(From Initiation of Close
Signal to Contact Make) | 60 | | Opening Time
(Initiation of Trip Signal
to Contact Break) | 45 | | Reclosing Time
(Initiation of Trip Signal
to Contact Make) | 165 | Figure 5-7 Standard Secondary Terminal Blocks Shown Mounted EAT-N Effective 2/9 SE IN1 6-1 I.B • TI SI SI IN SI SI W • AI SI IN IT HA MA LY IN IN **6-2** This VCF Gen lines unde 6-2. prop brea the or required the a of ap lar b desi ings whice are tome Effect cer ele- lied with or simple per of imber of control and ng mechwith the nanual ring mechof the acture. nanical linkage e counter cks # SECTION 6: BREAKER ELEMENT INTERFACING #### 6-1 INTRODUCTION # **WARNING** - THE CUSTOMER SHOULD READ AND UNDER-STAND THE WARNINGS AND CAUTIONS PRE-SENTED IN THIS INSTRUCTION BOOK BEFORE ANY ATTEMPT IS MADE TO ALTER, ADD TO OR INTERFACE WITH THE BREAKER ELEMENT AS SUPPLIED BY CUTLER-HAMMER. - IT IS IMPERATIVE THAT APPLICABLE ANSI STANDARDS BE COMPLIED WITH IN EVERY RE-SPECT AND THAT NO COMPROMISES ARE MADE WITH RESPECT TO ITS GUIDELINES OR INTENT. - ADDITIONS TO THE BREAKER ELEMENTS AS SUPPLIED BY CUTLER-HAMMER CAN BE MADE IN KEEPING WITH ANSI STANDARDS AND THE INSTRUCTIONS PRESENTED IN THIS INSTRUCTION BOOK. UNDER NO CIRCUMSTANCES, HOWEVER, SHOULD ALTERATIONS TO THE CUTLER-HAMMER SUPPLIED BREAKER ELEMENT BE MADE UNLESS THE ALTERATION IS SPECIFICALLY ADDRESSED AND PERMITTED BY THIS INSTRUCTION BOOK. #### 6-2 GENERAL GUIDELINES This section addresses interfacing guidelines for the VCP-W outdoor breaker element with the structure. General guidelines are presented first. Specific guidelines are presented after the general guidelines. Read, understand and follow all the guidelines presented. #### 6-2.1 ELECTRICAL CLEARANCES It is the responsibility of the customer to insure that the proper electrical clearances are maintained on the circuit breaker element, in the outdoor structure and between the circuit breaker element and its structure. These required electrical clearances must be in keeping with the appropriate ANSI Standard and the specific BIL level of application. The BIL Rating associated with a particular breaker element is a function of the overall tested design, which is the customer's responsibility. The ratings achieved with the original Cutler-Hammer design, which includes the enclosure and interphase barriers, are not necessarily applicable to all designs. The customer must prove their design ratings through testing. #### 6-2.2 INTERPHASE BARRIERS ANSI standards requires specific minimum air space clearances between poles for specific BIL application levels. It is the customer's responsibility to insure that proper interphase barriers are in place on all circuit breaker elements prior to placing it in service. Interphase barriers must be designed to fulfill the ANSI requirements. They must be constructed of an appropriate insulating material, such as a one eighth inch thick high strength, track resistant glass-mat polyester. #### 6-2.3 FRONT COVER (FACEPLATE) All VCP-W outdoor breaker elements are supplied with a front cover faceplate already installed (Figure 3-1). The front cover is constructed of a heavy gauge steel and solidly attached to the breaker element. The front cover, as supplied, prevents front access to the breaker mechanism and primary voltage parts. A breaker element specific nameplate and operational windows are also a part of the front cover (Figure 3-3). If a new front cover must be constructed for a specific circuit breaker design or application, all of the above mentioned features of the original faceplate must be carried over to the new faceplate. The new faceplate must reflect the following as a minimum (Figure 6-1): - A front cover should clearly indicate all of the information presented on the original nameplate. - A front cover should prevent front access to the breaker's operating mechanism and any primary voltage parts once the breaker is installed. - A front cover should include properly placed and sized windows so that operational indicators, such as main contact status and closing spring status, are clearly visible. - A front cover should include properly placed and sized windows for access to breaker operating devices, such as manual open/close buttons and the manual charging socket. ### 6-2.4 COMPARTMENT INTERFACE VERIFICATION Refer to Paragraph 4-8 and Figure 1-1 in this instruction book for details. In addition, refer to applicable ANSI
Standards. Figure 6-1 Typical VCP-W Front Cover, Nameplate and Operational Indicators SEC ANI I.B. 7-1 • DC PF • DC SE • DC SP • DC • DC SC SP > • DC A۷ TE FAIL TION INJU SAF 7-2 | MAIN Perio essei Outd tion f mend ing se be fo ic ins 1. In m ev 2. Fc ar ins 3. In: ru # SECTION 7: INSPECTION, MAINTENANCE AND TROUBLESHOOTING #### 7-1 INTRODUCTION # **WARNING** - DO NOT WORK ON A BREAKER ELEMENT WITH PRIMARY POWER APPLIED. - DO NOT WORK ON A BREAKER ELEMENT WITH SECONDARY CONTACTS CONNECTED. - DO NOT WORK ON A BREAKER ELEMENT WITH SPRINGS CHARGED OR CONTACTS CLOSED. - DO NOT DEFEAT ANY SAFETY INTERLOCKS. - DO NOT LEAVE MAINTENANCE TOOL IN THE SOCKET AFTER CHARGING THE CLOSING SPRINGS. - DO NOT STAND LESS THAN FOUR METERS AWAY FROM THE BREAKER ELEMENT WHEN TESTING FOR VACUUM INTEGRITY. FAILURE TO FOLLOW ANY OF THESE INSTRUC-TIONS MAY CAUSE DEATH, SERIOUS BODILY INJURY, OR PROPERTY DAMAGE. SEE SECTION 2 -SAFE PRACTICES FOR MORE INFORMATION. # 7-2 FREQUENCY OF INSPECTION AND MAINTENANCE Periodic inspections and associated maintenance are essential to the safe and reliable operation of VCP-W Outdoor Vacuum Circuit Breaker Elements. The inspection frequency and associated maintenance recommended are intended to insure the best possible ongoing service. It is imperative that an established schedule be followed. To establish an exact schedule for a specific installation, use the following guidelines: - In a clean, non-corrosive environment, inspect and maintain each circuit breaker element annually or every 500 operations, which ever comes first. - For special conditions such as frequent circuit breaker element operation, contaminated environments, and high temperature/humidity conditions, the inspection frequency should be twice a year. - Inspect a circuit breaker element every time it interrupts fault current. - 4. Follow the steps presented in Paragraph 7-3 entitled "Inspection and Maintenance Procedures" for scheduled programs. - Create and maintain a dated permanent record of all inspections, maintenance performed, actions taken, observations made, and measurements taken. Not only will this provide valuable historical information, it can help to establish whether or not the present schedule needs to be adjusted. - 6. Perform ongoing visual inspections, when possible, of all equipment on a regular basis. Be alert for an accumulation of dirt in and around the circuit breaker elements, loose hardware or discolored insulation. #### 7-2.1 QUALIFIED PERSONNEL For the purpose of operating this type of equipment, only individuals thoroughly trained in the operation of power circuit breakers and associated equipment, and having knowledge of connected loads may be considered to be qualified. Refer to further definitions in the National Electrical Safety Code. For the purpose of inspecting and maintaining such equipment, a qualified person must also be trained in regard to the hazards inherent to working with electricity and the proper way to perform such work. Such an individual should be able to de-energize, clear and tag circuits in accordance with established safety practices. In addition, these individuals should have access to and be trained in the use of protective equipment, such as rubber gloves and flash clothes. All personnel should be familiar with and understand the material presented in this instruction manual and other related manuals. #### 7-2.2 GENERAL TORQUE GUIDELINES Bolts and screws must be properly torqued. This is especially true if parts and/or accessories are added or replaced. Table 7.1 provides guidelines on torque levels. The table is intended as a general guideline and should be applied in conjunction with the experience and good judgment of the individual performing the work. # **CAUTION** OVER TORQUING CAN CAUSE PERMANENT DAMAGE WHILE UNDER TORQUING WILL NOT PROVIDE THE PROPER CLAMPING FORCE AND MAY EVENTUALLY WORK LOOSE. Table 7.1 Torque Guidelines | Bolt Size | Torque (LB-IN) | |-----------|----------------| | 8 - 32 | 24 | | 10 - 32 | 36 | | 1/4 - 20 | 72 | | 5/16 - 18 | 144 (12 lb-ft) | | 3/8 - 16 | 300 (25 lb-ft) | | 1/2 - 13 | 540 (45 lb-ft) | Figure 7-1 Lubrication Points 7-3 II I.B. No./So insul integ 2. Powe Elem 3. Contr Circui Parts 4. Opera Mech Effective # 7-3 INSPECTION AND MAINTENANCE PROCEDURES | lo./Section | Inspection Item | Criteria | Inspection Method | Corrective Action | |--------------------------------|---|--|--|---| | Insulation | Drive Insulator | No dirt | Visual Check | Clean with lint-free cloth and | | | Molded Pole Unit Support | No cracking | Visual Check | Replace cracked unit | | Insulation | Main Circuit to Ground | Withstand | Hipot Tester | Clean and retest or replace | | Integrity | Between Main Circuit
Terminals | Withstand | Hipot Tester | Clean and retest or replace | | | Control Circuit to Ground | Withstand | Hipot Tester | Clean and retest or replace | | Power
Elements | Vacuum Interrupters | Visibility of 3 front
Contact Erosion Marks
and Precise Measure-
ment from rear | Visual/Measurement - Close the breaker
and observe if all 3 front indicator marks
are in green area, and then proceed as
described in Paragraph 7-5 | If the front indicator marks are in the red area and the rear measurement is not acceptable, replace pole unit assembly | | | | Contact wipe measurement | Measurement of Loading Spring as described in Paragraph 7-5 | If measurement is not acceptable, replace pole unit assembly | | | | Adequate Vacuum | Proceed with integrity check as described in Paragraph 7-4 | If integrity check is not satisfactory, replace pole unit assembly | | | Primary Disconnects | No burning or damage | Visual Check | Replace if burned, damaged or erode | | 3. Control
Circuit
Parts | Closing and Tripping Device Including Disconnects | Smooth and correct operation by control power | Test closing and tripping of the breaker twice | Replace any defective device.
Identify per trouble-shooting chart | | | Wiring | Securely tied in proper place | Visual Check | Repair or tie as necessary | | | Terminals | Tight | Visual Check | Tighten or replace if necessary | | | Motor | Smooth, Normal
Operation | Functional Test | Replace brushes or motor | | 4. Operating
Mechanism | Tightness of Hardware | No loose or missing parts | Visual and by feel | Refer to Table 7.1 and tighten or reinstate if necessary with appropriat tools | | | Dust or Foreign Matter | No dust or foreign matter | Visual Check | Clean as necessary | | | Lubrication | Smooth operation
and no excessive
wear | Sight, feel and per maintenance schedule | Refer to Figure 7-1 , Paragraph 7-10 and lubricate very sparingly with light machine oil | | | Deformation or Excessive
Wear | No excessive deformation or wear | Visual and operational | Remove cause and replace parts | | | Manual Operation | Smooth operation | Manual charging, closing | Correct per troubleshooting chart | #### 7-4 VACUUM INTERRUPTER INTEGRITY TEST Vacuum interrupters used in Type VCP-W Outdoor Vacuum Circuit Breaker Elements are highly reliable interrupting elements. Satisfactory performance of these devices is dependent upon the integrity of the vacuum in the interrupter and the internal dielectric strength. Both of these parameters can be readily checked by a one minute ac high potential test. Refer to Table 7.2 for the appropriate test voltage. During this test, the following warning must be observed: # **WARNING** APPLYING ABNORMALLY HIGH VOLTAGE ACROSS A PAIR OF CONTACTS IN VACUUM MAY PRODUCE X-RADIATION. THE RADIATION MAY INCREASE WITH THE INCREASE IN VOLTAGE AND/OR DECREASE IN CONTACT SPACING. X-RADIATION PRODUCED DURING THIS TEST WITH RECOM-MENDED VOLTAGE AND NORMAL CONTACT SPACING IS EXTREMELY LOW AND WELL BELOW MAXIMUM PERMITTED BY STANDARDS. HOWEV-ER. AS A PRECAUTIONARY MEASURE AGAINST POSSIBILITY OF APPLICATION OF HIGHER THAN RECOMMENDED VOLTAGE AND/OR BELOW NOR-MAL CONTACT SPACING, IT IS RECOMMENDED THAT ALL OPERATING PERSONNEL STAND AT LEAST FOUR METERS AWAY IN FRONT OF THE BREAKER ELEMENT. With the breaker element open, connect all top primary studs (bars) together and to the high potential machine lead. Connect all bottom studs together and ground them along with the breaker frame. Start the machine at zero potential, increase to appropriate test voltage and maintain for one minute. A successful withstand indicates that all interrupters have a satisfactory vacuum level. If there is a breakdown, the defective interrupter or interrupters should be identified by an individual test and replaced before placing the breaker in service. After the high potential is removed, discharge any electrical charge that may be retained. To avoid any ambiguity in the ac high potential test due to leakage or displacement (capacitive) current, the test unit should have sufficient volt-ampere capacity. It is recommended that the equipment be capable of delivering 25 milliamperes for one minute. Although an ac high potential test is recommended, a dc test may be performed if only a dc test unit is available. Table 7.2 Test Voltage | | Vacuum Interrupter Integrity Test Voltage | | | | | |----------------------------------|---|------|--|--|--| | Breaker Rated
Maximum Voltage | ac 60 Hz | dc | | | | | Up to and including
15.5 kV | 27 kV | 40kV | | | | In this case the equipment must be capable of deliverir 5 milliamperes for one minute to avoid ambiguity due to field emission or leakage currents and the test voltage shall be as shown in Table 7.2.
The current delivery capability of 25 ma ac and 5 ma d apply when all three VIs are tested in parallel. If individual VIs are tested, current capability may be one third these values. # **CAUTION** SOME DC HIGH POTENTIAL UNITS, OPERATING A UNFILTERED HALF-WAVE RECTIFIERS, ARE NOT SUITABLE FOR USE TO TEST VACUUM INTER-RUPTERS BECAUSE THE PEAK VOLTAGE APPEARING ACROSS THE INTERRUPTERS CAN B SUBSTANTIALLY GREATER THAN THE VALUE READ ON THE METER. #### 7-5 CONTACT EROSION AND WIPE Since the contacts are contained inside the interrupter, they remain clean and require no maintenance. However during high current interruptions there may be a minimula amount of erosion from the contact surfaces. Maximum permitted erosion is 1/8 inch. To determine contact erosion, close the breaker and observe the vacuum interrupter moving stem from the rear of the breaker. If the mark on each stem is visible, erosion has not reached maximum value thus indicating satisfactory contact surface of the interrupter. If the mark is not visible, the pole unit assembly must be replaced (Figures 7-2 and 7-3). The adequacy of contact wipe can also be determined by simply observing the indicator on the drive rod toward the front of the closed breaker. If the wipe is a quate, some portion of the indicator "T" will be visible (Figures 7-4 and 7-5). If no portion shows with the breaker closed, the wipe is not adequate, and the pol unit assembly must be replaced. Figure Figure Erosia Clarity Effective I.B. 6468C69H01 Page 25 Figure 7-2 Vacuum Interrupter Showing Contact Erosion Indicator with Breaker Open (Shown Here for Clarity Purposes Only) Figure 7-3 Vacuum Interrupter Showing Contact Erosion Indicator with Breaker Closed (Indicators are Checked Only When Breaker is Closed) Figure 7-4 Typical "T" Contact Wipe Indicator Figure 7-5 Typical Wipe Indication # **WARNING** FAILURE TO REPLACE A POLE UNIT ASSEMBLY WHEN CONTACT EROSION MARK IS NOT VISIBLE OR WIPE IS UNSATISFACTORY, WILL CAUSE THE BREAKER TO FAIL TO INTERRUPT AND THEREBY CAUSE PROPERTY DAMAGE OR PERSONAL INJURY. #### 7-6 INSULATION Type VCP-W Outdoor Vacuum Circuit Breaker Elements primarily utilize cycloaliphatic epoxy insulation. Insulation maintenance primarily consists of keeping all insulating surfaces clean. This can be done by wiping off all insulating surfaces with a dry lint free cloth or dry paper towel. In case there is any tightly adhering dirt that will not come off by wiping, it can be removed with a mild solvent or distilled water. Be sure that the surfaces are dry before placing the breaker in service. If a solvent is required to cut dirt, use Stoddard's Solvent Cutler Hammer 55812CA or commercial equivalent. Secondary control wiring also requires inspection for insulation damage. #### 7-7 INSULATION INTEGRITY CHECK #### Primary Circuit: The integrity of primary insulation may be checked by the 60Hz AC high potential test. The test voltage depends upon the maximum rated voltage of the breaker. For the breaker elements rated 15.5 kV the test voltage is 38.0 kV. Conduct the test as follows: Close the breaker. Connect the high potential lead of the test machine to one of the poles of the breaker. Connect the remaining poles and breaker frame to ground. Start the machine with output potential at zero and increase to the test voltage. Maintain the test voltage for one minute. Repeat for the remaining poles. Successful withstand indicates satisfactory insulation strength of the primary circuit. If a DC high potential machine is used, make certain that the peak voltage does not exceed the peak of the corresponding AC rms test voltage. #### Secondary Circuit: Connect all points of the secondary terminal block with shooting wire. Connect this wire to the high potential lead of the test machine. Ground the breaker frame. Starting with zero, increase the voltage to 1200 volts rms. Maintain the voltage for one minute. Successful withstand indicates satisfactory insulation strength of the secondary control circuit. Remove the shooting wire. #### 7-8 PRIMARY CIRCUIT RESISTANCE CHECK Since the main contacts are inside the vacuum chamber, they remain clean and require no maintenance at any time. Unlike many typical circuit breaker designs, VCP-W breakers do not have sliding contacts at the moving stem either. Instead they use a highly reliable and unique flexible clamp design that eliminates the need for lubrication and inspection for wear. If desired, the DC resistance of the primary circuit may be measured as follows: close the breaker, pass at least 100 amps DC current through the breaker. With a low resistance instrument, measure resistance across the studs on the breaker for each pole. The resistance should not exceed the values shown in Table 7.3. #### 7-9 MECHANISM CHECK Make a careful visual inspection of the mechanism for any loose parts such as bolts, nuts, pins and rings. Check for excessive wear or damage to the breaker components. Operate the breaker several times manually and electrically. Check the closing and opening times to verify that they are in accordance with the limits in Table **5.1**. #### 7-10 LUBRICATION All parts that require lubrication have been lubricated during the assembly with molybdenum disulphide grease (Cutler-Hammer Material No. 53701QB). Over a period of time, this lubricant may be pushed out of the way or degrade. Proper lubrication at regular intervals is essential for maintaining the reliable performance of the mechanism. Once a year or every 500 operations whichever comes first, the breaker should be relubricated. The locations shown in Figure 7-1 should be lubricated with a drop of light machine oil. After lubrication, operate the breaker several times manually and electrically. Roller bearings are used on the pole shaft, the cam shaft, the main link and the motor eccentric. These bearings are packed at the factory with a top grade slow oxidizing grease which normally should be effective for many years. They should not be disturbed unless there is definite evidence of sluggishness, dirt or parts are dismantled for some reason. If it becomes necessary to disassemble the mechanism, the bearings and related parts should be thoroughly cleaned. Remove old grease in a good grease solvent. Do not use carbon tetrachloride. They should then be washed in light machine oil until the cleaner is removed. After the oil has been drawn off, the bearings should be packed with Cutler-Hammer Grease 53701QB or equivalent Table 7.3 Typical Resistance Measurements | Rated Continuous
Current (amperes) | Resistance
(microohms) | |---------------------------------------|---------------------------| | 600 | 40 | | 1200 | 40 | | | | # 7-11 TROUBLESHOOTING CHART (Continued Next Page) | SYMPTOM | INSPECTION AREA | PROBABLE DEFECTS | |-----------------------------|-----------------|---| | Falls To Close | | | | Closing Springs not charged | Control Circuit | Control Power (fuse blown or switch off) Secondary Disconnects Motor Cut-off Switch (Poor or burned contacts, Lever not operational) Terminals and connectors (Poor or burned contacts) Motor (Brushes worn or commutator segment open) | | | Mechanism | Pawls (Slipping or Broken) Ratchet Wheel (Teeth worn or broken) Cam Shaft Assembly (Sluggish or jammed) Oscillator (Reset spring off or broken) | # 7-11 TROUBLESHOOTING CHART (Continued Next Page) | SYMPTOM | INSPECTION AREA | PROBABLE DEFECTS | |---|--|--| | Falls To Close 1 Mr. donate in
the Line of | is in the majoration and majorate in the state of sta | | | Closing Spring charged but breaker does not close | No Closing Sound
(Close Coil does
not pick up) | Control Power (Fuse blown or switch off) | | | | Secondary Disconnects | | | | Anti-Pump Relay (Y relay N. C. contact open or burned or relay picks up) | | | | Close Coit (Open or burned) | | | | Latch Check Switch
(Contact open-bad switch or
trip bar not reset) | | | | Auxiliary Switch
(b contact open or burned) | | | | Motor Cut-off (Contacts open or burned) | | | | Trip Coil Assembly (Clapper fails to reset) | | | Closing Sound
but no close | Pole Shaft (Not open fully) | | | | Trip Latch Reset Spring (Damaged or Missing) | | | | Trip Bar-D Shaft (Fails to remain reset) | | | | Trip Latch-Hatchet (Fails to remain reset) | | | | Trip Floor Tripper (Fails to remain reset) | | | | Close Latch (Binding) | | | | Close Latch Roller (Binding) | | | | Trip Circuit Energized | ### 7-11 TROUBLESHOOTING CHART | SYMPTOM | INSPECTION AREA | PROBABLE DEFECTS | |----------------------------|--|---| | Undesirably Closes | | | | | Control Circuit | Close Circuit
(CS/C Getting Shorted) | | | Mechanism | Close Release Latch
(Fails to reset) | | | | Close Floor Tripper
(Fails to reset) | | Fálls To Trip | | | | No Trip Sound | Control Circuit | Control Power (Fuse blown or switch off) | | | | Secondary Disconnect | | | | Auxiliary Switch (a contact not making, poor or burned) | | | | Trip Coil (Burned or open) | | | | Terminals and Connections (Poor or burned or open) | | | Trip Mechanism | Trip Clapper (Jammed) | | Trip Sound But No Trip | Trip Mechanism | Trip Bar, Trip Latch (Jammed) | | | | Pole Shaft (Jammed) | | | | Operating Rod Assembly
(Broken or pins out) | | | Vacuum Interrupter
(One or more Welded) | | | Unicestrably Trips | | | | | Control Circuit | Control Power (CS/T Switch, remains made) | | | Mechanism | Trip Coil Clapper
(Not resetting) | | | | Trip Bar or Trip Latch (Poor engagement of mating or worn surfaces) | | | | Trip Bar Reset Spring
(Loss of torque) | This instruction booklet is published solely for information purposes and should not be considered all inclusive. If further information is required, you should consult Cutler-Hammer. Sale of product shown in this literature is subject to terms and conditions outlined in appropriate Cutler-Hammer selling policies or other contractual agreement between the parties. This literature is not intended to and does not enlarge or add to any such contract. The sole source governing the rights and remedies of any purchaser of this equipment is the contract between the purchaser and Cutler-Hammer. NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF FITNESS FOR A PAR-TICULAR PURPOSE OR MERCHANTABILITY, OR WARRANTIES ARISING FROM COURSE OF DEAL-ING OR USAGE OF TRADE, ARE MADE REGARDING THE INFORMATION, RECOMMENDATIONS AND DESCRIPTIONS CONTAINED HEREIN. In no event will Cutler-Hammer be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or otherwise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information, recommendations and description contained herein. # Cutier-Hammer Westinghouse & Cutier-Hammer Products Five Parkway Center Pittsburgh, PA 15220