Switch-on delay

The digital signal x must have the value " 1 " without any interruption during the time T before output y changes to " 1 ".

Switch-off delay

The digital signal x must have the value " 0 " without interruption during the time T before output y changes to " 0 ".

Delay (switch-on and switch-off)

The digital signal x must have the value "1" without interruption during time T_{1} or must have the value " 0 " during time T_{2} before output y changes its signal state.

PT1 element

Delay element, first order.
pxxxx = time constant

PT2 low pass

Natural frequency, denominator Damping, denominator

Transfer function
$H(s)=\frac{1}{\left(\frac{s}{2 \pi f n _n}\right)^{2}+\frac{2 \cdot D_{-} n}{2 \pi f n _n} \cdot s+1}$

2nd-order filter (bandstop/general filter)

Used as bandstop filter

$$
\begin{array}{ll}
\text { - center frequency fs: } & \begin{array}{l}
\text { fn_z }=f s \\
\text { fn_n }=f s
\end{array} \\
\text { - bandwidth f_B: } & D_{-} z=0 \\
& D_{-} n=\frac{f _B}{2^{\cdot} \cdot f s}
\end{array}
$$

Transfer function when used as general filter
$H(s)=\frac{\left(\frac{s}{2 \pi f n_{-} z}\right)^{2}+\frac{2 \cdot D_{-} z}{2 \pi f n_{-} z} \cdot s+1}{\left(\frac{s}{2 \pi f n_{-} n}\right)^{2}+\frac{2 \cdot D_{-} n}{2 \pi f n _n} \cdot s+1}$

Analog adder can be activated

The following applies to $\mathrm{I}=0$ signal: $\mathrm{y}=\mathrm{x}_{1}$

